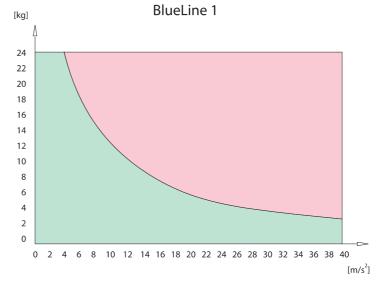
Closed timing belt feed axis

- Aluminium profile with midget linear guide MLF 1
- Clearance-free feed with timing belt
 - timing belt with 3 mm pitch, width 15 mm
- Feed 2.4 m/s, at the most

- Shaft slide WS 1 L 126 x W 72 mm
- Repetitive accuracy less or equal \pm 0.2 mm
- Limit and/or reference switch Accuracy < 0.1 mm
- Available in lengths up to 2.05 m
- Motor can be mounted on both sides due to an extended shaft end on the driving side
- Numerous combination possibilities due to additional special and angle profiles
- Integrated reference switch

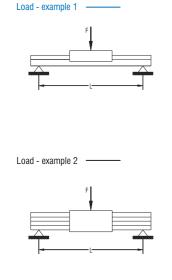
Technical data

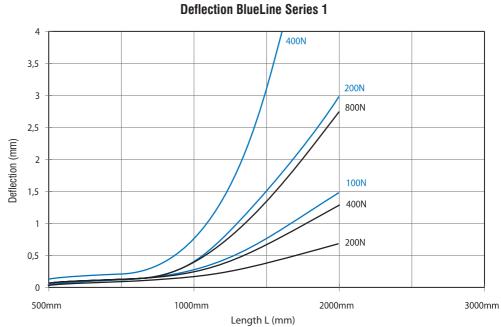
Belt version	. HTD 3M, width 15 mm
Mass of slide	0.730 kg
Weight without drive module	1,000 mm ≘ 6.25 kg
Nominal mass of timing belt	0.0375 kg/m


Nominal weight of feed axis0.440 kg/100 mm
Effective diameter of the synchronized pulleys Ø 15.28 mm
Moment of inertia of the synchronized pulleys 1.461·10 ⁻⁶ kgm ²
Feed per revolution48 mm

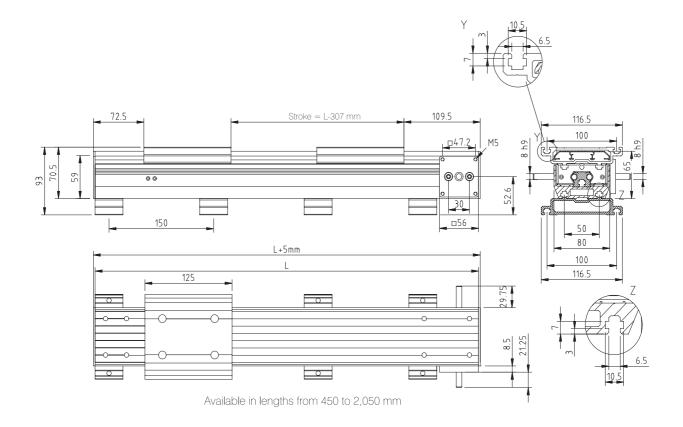
Idle torques

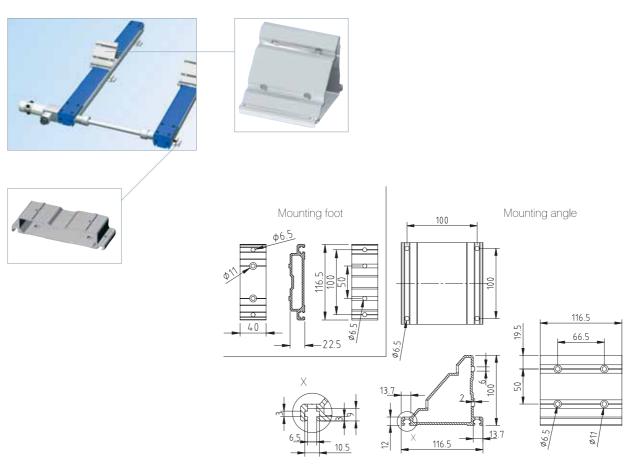
Revolution	Idle torque
[1/min]	[Nm]
500	0.06
1,500	0.09
3,000	0.13


Load diagram

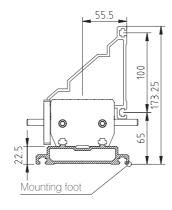

Permissible accelerated masses related to belt strength*

^{*}At vertical assembly, the acceleration due to gravity ($g = 9.81 \text{ m/s}^2$) has to be taken into account


Deflection

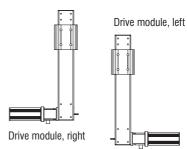


Timing Belt Feed Axis



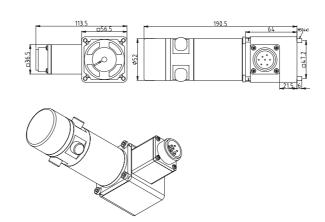
Mounting foot and mounting angle

Mounting angle as angle slide

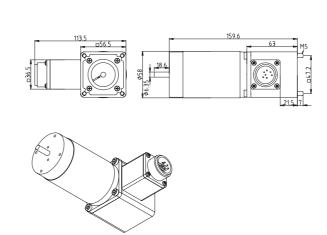

Drive Modules

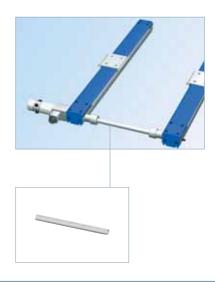
DC servo motor MV 120

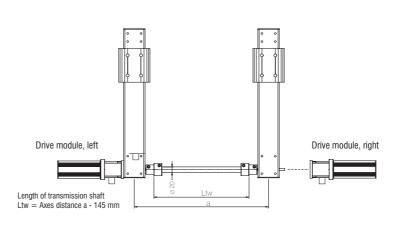
Nominal power	120 W
Nominal speed	3,000 rpm
Nominal torque	38 Ncm
Current at nominal torque	2.8 A
Nominal voltage	65 V
Max. torque	220 Ncm
Current at max. torque	13 A
Ambient temperature	0 - 40 °C


Stepping motor MS 160

Holding torque – bipolar 160 Ncm
Stepping angle, full step 1.8 degree
half step 0.9 degree
Nominal voltage – bipolar 1.7 V
Resistance of winding 1.2 Ω I
Inductance of winding 2.2 mH
Current of winding – bipolar4.1 A

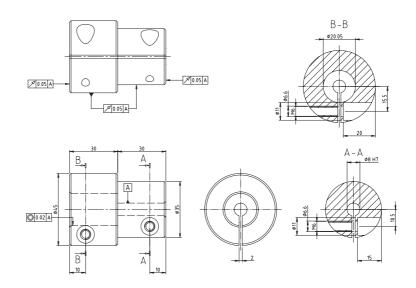

Drive module with DC servo motor MV 120


Drive module with stepping motor MS 160



Connection of two timing belt feed axes

Transmission shaft



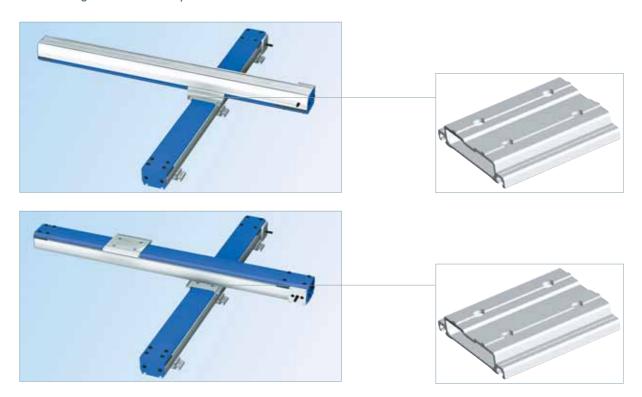
Connection of two timing belt feed axes

Coupling for transmission shaft

Moments of inertia

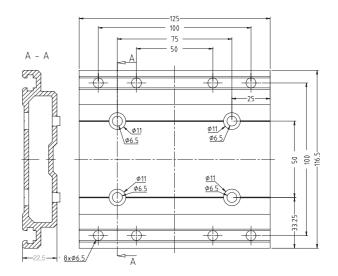
for coupling and transmission shaft

Coupling


Transmission shaft (per 100 mm)

 $J_k \ = 4.258 \ 10^{\text{--}5} \ kgm^2$

 $J_{Trs} = 2.513 \ 10^{-6} \ kgm^2/100 \ mm$


Compound table construction

Connecting slides for compound tables

One of the timing belt feed axes has to be supplied with a connecting slide for compound tables in order to make the compound table construction possible.

The assembly takes place in the factory.

Order key

Motor

- **0** = without motor
- 1 = with stepping motor MS 160
- 2 = with DC servo motor MV 120

Driving side

- **0** = motor connection, right*
- 1 = motor connection, left*
 - * Motor flange for drive is mounted on the right resp. left side

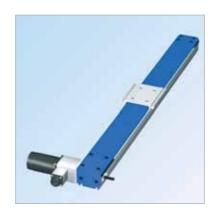
232 1XX XXXX

Slide / connection

- $\mathbf{0}$ = with standard slide profile
- 1 = with connecting slides for compound tables
- 2 = with angle slide, right
- 3 = with angle slide, left

Basic profile lengths (mm)

450, 550, 650, 750, 850, 950, 1,050, 1,150, 1,250, 1,350, 1,450, 1,550, 1,650, 1,750, 1,850, 1,950, 2.050


(e. g. 450 mm = 0452,050 mm = 205)

Order samples

- · without motor
- · motor connection, left
- · with standard slide pofile
- basic profile length 750 mm

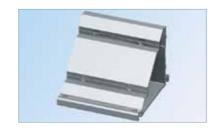
Item no.: 232101 0075

- with stepping motor MS 160
- motor connection, left
- · with standard slide profile
- basic profile length 750 mm

Item no.: 232111 0075

- with DC servo motor MV 120
- · motor connection, left
- with angle slide, right
- basic profile length 750 mm

Item no.: 232121 2075


Accessory

Feet

- for BlueLine series 1
- 116.5 x 40 x 22.5 mm
- · packing unit: 2 pieces

Item no.: 232199 0001

Angle slide as angle bracket

- for BlueLine series 1
- · incl. fastening

Item no.: 232199 0002

Coupling for transmission shaft

- for BlueLine series 1
- packaging unit: 2 couplings

Item no.: 218050 0001

Transmission shaft Ø 20 mm

• for BlueLine-Serie 1

Length 1 m, item no.: 219001 0120 Length 2 m, item no.: 219001 0220

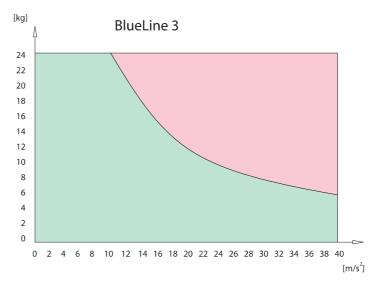
Closed timing belt feed axis

- Aluminium profile with midget linear guide MLF 3
- Clearance-free feed with timing belt feed axis
 - timing belt with 5 mm pitch, width 25 mm
- Feed 5 m/s, at the most
- Shaft slide WS 3, L 176 x W 130 mm

- Repeatability less or equal \pm 0.2 mm
- Limit and/or reference switch, accuracy < 0.1 mm
- Available in lengths up to 3 m
- Motor can be mounted on both sides due to an extended shaft end on the driving side
- Numerous combination possibilities due to additional special and angle profiles
- Integrated reference switch
- Option: special lengths (100 1/mm raster) upon request, max. 3,000 mm

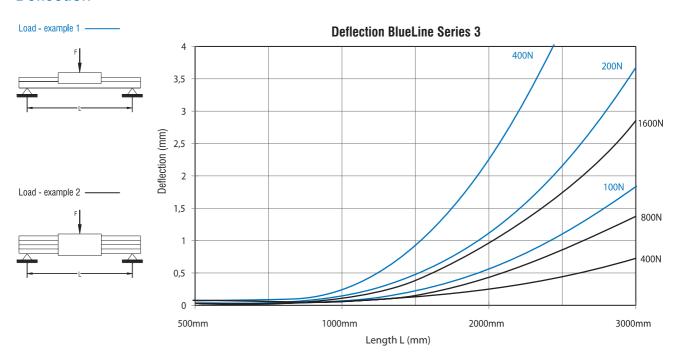
Technical specifications

Belt version	. HTD 5M, width 25 mm
Mass of slide	1.753 kg
Weight without drive module	1,000 mm ≙ 12 kg
Nominal mass of timing belt	0.09 kg/m

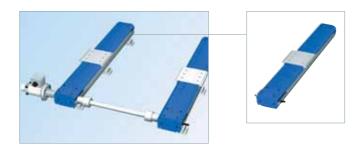

Nominal weight of feed axis	
Effective diameter of the synchronized pulleys Ø 22.28 mm	
Moment of inertia of the synchronized pulleys 8.542·10 ⁻⁵ kgm ²	
Feed per revolution70 mm	

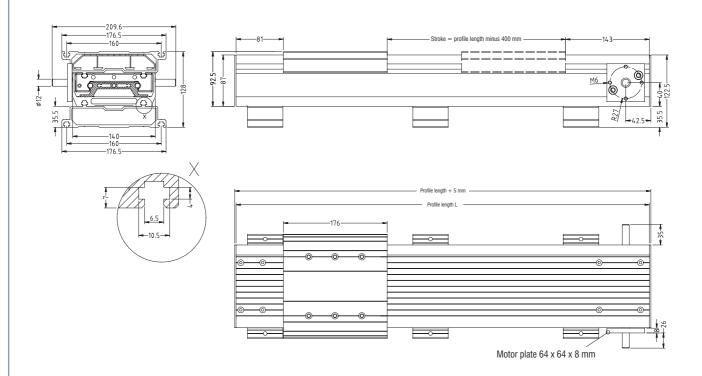
Idle torques

Revolution	Idle torque
[1/min]	[Nm]
500	0.16
1500	0.24
3000	0.36

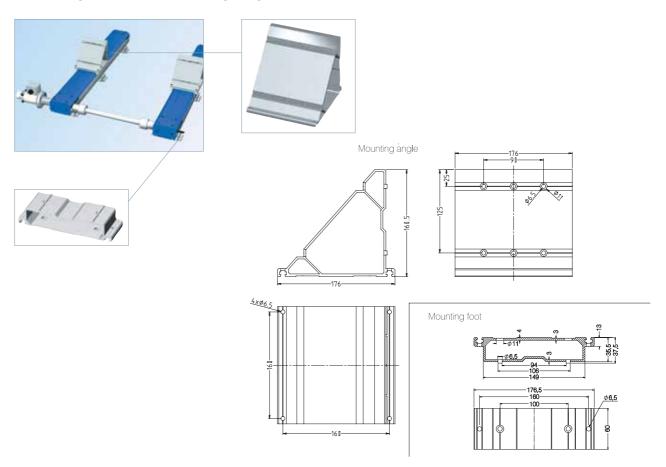

Load diagram

Permissible accelerated masses related to belt strength*

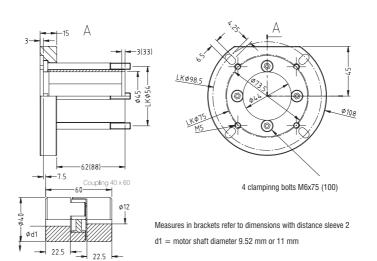



 $^{^{\}star}$ At vertical assembly, the acceleration due to gravity (g = 9.81 m/s²) has to be taken into account

Deflection



Timing Belt Feed Axis



Mounting foot and mounting angle

Coupling casing set 2

Drive modules

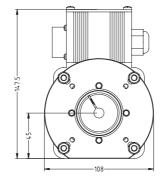
Stepping motor MS 430 HT DC servo motor MV 330

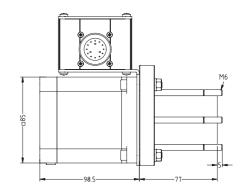
Holding torque – bipolar	600 Ncm
Stepping angle, full step	1.8 deg
half step	0.9 deg
Nominal voltage – bipolar	2.8 V
Resistance of winding	0.66 Ω
Inductance of winding	2.5 mH
Current of winding – hinglar	5 9 A

Nominal power	330 W
Nominal speed	3,000 rpm
Nominal torque	100 Ncm
Current at nominal torque	6.5 A
Nominal voltage	65 V
Peak torque	539 Ncm
Current at peak torque	30 A
Ambient temperature	0 - 40 °C

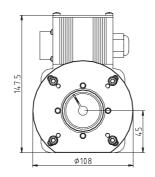
AC servo motor MY 073

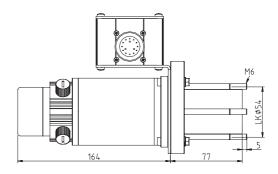
Nominal power	.830 W
Nominal speed	.4,000 rpm
Nominal permanent torque	200 Ncm
Nominal permanent current	4.7 A
Voltage constant	.26.3 V/1000
Moment of inertia of rotor	0.57 kgcm ²



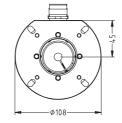


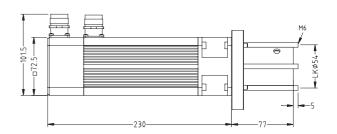
Drive module with stepping motor MS 430 HT



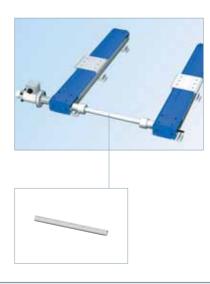


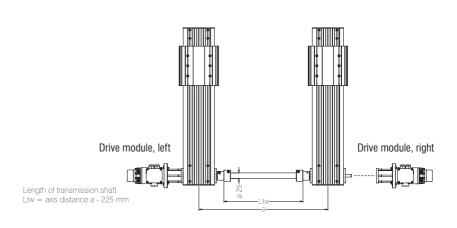
Drive module with DC servo motor MV 330



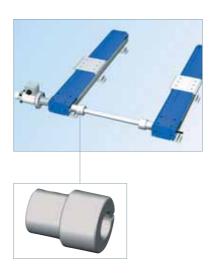


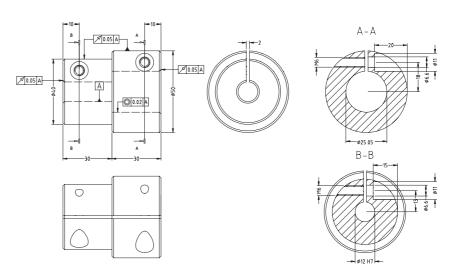
Drive module with AC servo motor MY 073





Connection of two timing belt feed axes


Transmission shaft



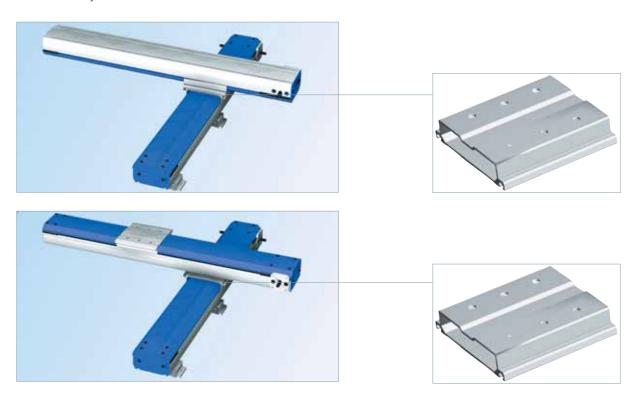
Connection of two timing belt feed axes

Coupling for transmission shaft

Moments of inertia

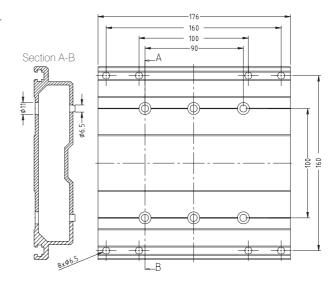
for coupling and transmission shaft

Coupling


Transmission shaft (per 100 mm)

 $J_k \ = 6.643 \ 10^{\text{-5}} \ kgm^2$

 $J_{Trs} = 5.218 \ 10^{-6} \ kgm^2/100 \ mm$


Compound table construction

Cross-table junction slide

One of the timing belt feed axes has to be supplied with a connecting slide for compound tables in order to make the compound table construction possible.

The assembly takes place in the factory.

Order key

232 30X XXXX

Driving side

Stepping motor

DC servo motor

AC servo motor

0 = motor connection, right

1 = motor connection, left

Slide / connection

0 = with standard slide profile

1 = with connecting slides for compound tables

Basic profile lengths (mm)

800	(item no.: <mark>075</mark>)
1,100	(item no.:105)
1,200	(item no.:115)
1,600	(item no.:155)
2,100	(item no.:205)
2,600	(item no.:255)
2,900	(item no.:285)
3,000	(item no.:295)

Drives Drive on the right side

Item no.

MV 330

MS 430 HT

MY 073

396085 0193

396104 0093 396573 0020

Drive on the left side

396085 0020 396104 0020

Item no.

396573 0020

Order samples

- with stepping motor MS 430 HT
- · motor connection, left
- · with standard slide profile
- basic profile length 800 mm

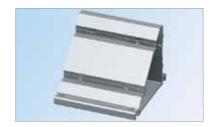
Item no.: 232301 0075 (feed) Item no.: 396085 0020 (drive)

- with DC servo motor MV 330
- · motor connection, left
- · with angle bracket, right
- · basic profile length 800 mm

Item no.: 232301 0075 (feed) Item no.: 396104 0020 (drive)

- with AC servo motor MY 073
- · motor connection, left
- · with standard slide profile
- · basic profile length 800 mm

Item no.: 232301 0075 (feed) item no.: 396573 0020 (drive)


^{*} Please, order the drive modules separately; use the above-stated item numbers for this purpose. Do not forget to specify whether the delivery should take place with or without extension. Regarding the AC servo motor MY 073, the driving side has to be stated separately.

Accessory

- for BlueLine series 3
- 176.5 x 60 x 35.5 mm,
- packing unit: 2 pieces

Item no.: 232399 0001

Angle Brackets

- for BlueLine series 3
- incl. fastening

Item no.: 232399 0002

Coupling for transmission shaft

- for BlueLine series 3
- packing unit: 2 couplings


Item no.: 218050 0002

Transmission shaft Ø 25 mm

• for BlueLine series 3

Length 1 m, item no.: 219001 0125 Length 2 m, item no.: 219001 0225

Open timing belt feed axis

- Aluminium profile with midget linear guide MLF 2
- Clearance-free feed with timing belt feed axis
 - timing belt with 3 mm pitch, width 9 mm
- Feed per revolution: 60 mm

- ullet Repeatability less or equal \pm 0.2 mm
- Feed 1.5 m/s, at the most
- Limit and/or reference switch accuracy< 0.1 mm (with drive modules)
- Option: special lengths (100 1/mm raster) upon request, max. 6,000 mm

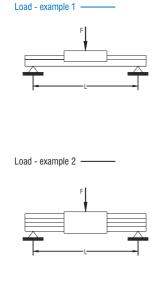
ZF 1

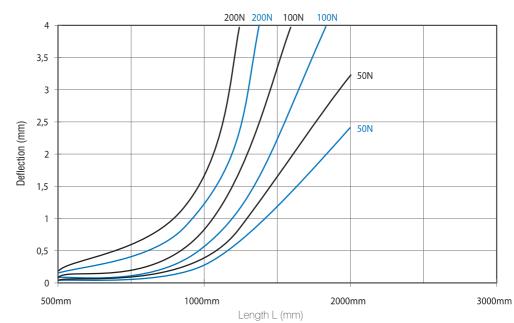
Technical specifications

Belt version	HTD 3M, width 9 mm
Weight of slide	0.430 kg
Weight without drive module	1000 mm ≘ 3 kg
Nominal mass of timing belt	0.0225 kg/m
Weight of carriage	1.03 kg

Nominal weight of guide	0.200 kg/100 mm
Effective diameter of the synchronized pulleys	Ø 19.10 mm
Moment of inertia of the synchronized pulleys	5.585·10 ⁻⁷ kgm ²
Feed per revolution	60 mm

Load diagram

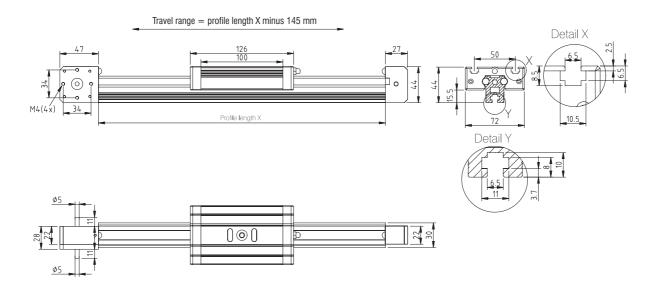

Permissible accelerated masses related to belt strength*



 $^{^{\}star}$ At vertical assembly, the acceleration due to gravity (g = 9.81 m/s²) has to be taken into account

Deflection

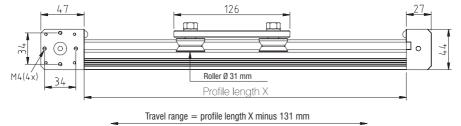
Deflection Timing Belt Feed Axis ZF 1

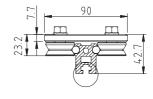


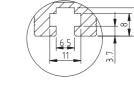
ZF 1

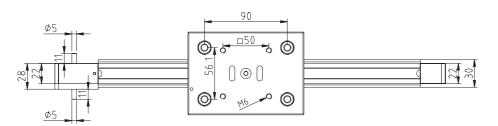
Timing belt feed axis without motor

with shaft slide







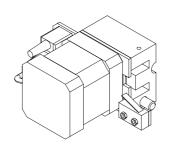

without motor with carriage

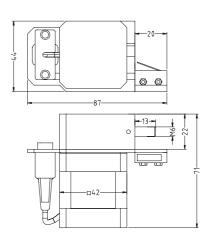
ZF 1

Drive modules

Stepping motor MS 050 HT

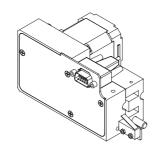
Holding torque - bipolar 50 Ncm	١
Stepping angle, full step 1.8 deg	
Stepping angle, half step0.9 deg	
Nominal voltage – bipolar3.2 V	
Resistance of winding 1.1 Ω	
Inductance of winding 1.85 ml	+
Current of winding - bipolar1.8 A	

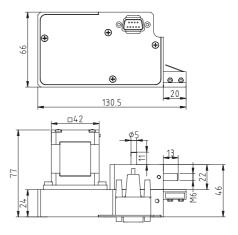

Stepping motor MS 160


Holding torque – bipolar160 Ncm
Stepping angle, full step 1.8 deg
Stepping angle, half step0.9 deg
Nominal voltage – bipolar1.7 V
Resistance of winding 1.2 Ω
Inductance of winding2.2 mH
Current of winding - bipolar4.1 A

Drive module with stepping motor MS 050 HT (ratio 1:1)

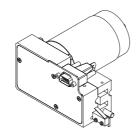
Feed: 60 mm/revolution

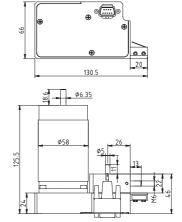




Drive module with stepping motor MS 050 HT (ratio 2:1)

Feed: 30 mm/revolution


ZF 1


Drive module with stepping motor MS 160 (ratio 2:1)

Feed: 30 mm/revolution *

* upon request: gear ratio 1:1, 60 mm/revolution

ZF 1

Order key

232 005 XXXX

Drives, slides, carriages			Profile lengths MLF 2 (mm)
0 = stepping motor MS 050 HT	(ratio 1:1)	with shaft slide	298, 398, 498, 598, 675,
1 = stepping motor MS 050 HT	(ratio 1:1)	with carriage	698, 798, 998, 1498, 1798,
2 = stepping motor MS 050 HT	(ratio 2:1)	with shaft slide	1998, 2498, 2998
3 = stepping motor MS 050 HT	(ratio 2:1)	with carriage	(e. g. $398 \text{ mm} = 040$
4 = stepping motor MS 160	(ratio 2:1)	with shaft slide	675 mm = 068)
5 = stepping motor MS 160	(ratio 2:1)	with carriage	
6 = DC servo motor MV 120	(ratio 1:1)	with shaft slide	Options: up to 6,000 mm
7 = stepping motor MS 135 HT	(ratio 2:1)	with shaft slide	
8 = without motor		with shaft slide	
9 = without motor		with carriage	
Y = stepping motor MS 160, motor on the right side	(ratio 1:1)	with shaft slide	
Z = stepping motor MS 160 motor on the left side	(ratio 1:1)	with shaft slide	

Order samples

- with stepping motor MS 050 HT*
- ratio 1:1
- with shaft slide
- profile length 675 mm

Item no.: 232005 0068

- with stepping motor MS 050 HT*
- ratio 2:1
- with shaft slide
- profile length 675 mm

Item no.: 232005 2068

- with stepping motor MS 160*
- ratio 2:1
- · with shaft slide
- profile length 675 mm

Item no.: 232005 4068

* Set-up of motor according to picture

Accessory

Angle brackets
• for ZF 1

Item no.: 204110 0010

Coupling 20/30

- for ZF 1
- 1 packaging unit = 1 coupling

Item no.: 218001 5080

Limit switch set

- Option: second limit switch
- for ZF1

Item no.: 632 125 0002

Open timing belt feed axis

- Aluminium profile with midget linear guide MLF 5
- Clearance-free feed with timing belt feed axis
 - timing belt with 5 mm pitch, width 25 mm
- Feed 5 m/s, at the most
- Shaft slide WS 3
 L 176 x W 130 mm

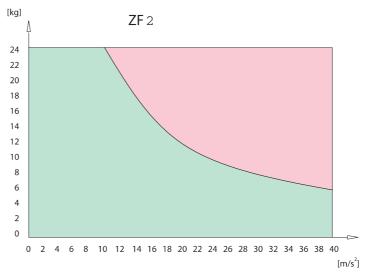
- Feed per revolution: 70 mm
- Repeatability less or equal ± 0.2 mm
- Limit and/or reference switch, accuracy < 0.1 mm
- available in lengths up to 6,000 mm
- at direct drives, motor modules can be flange-mounted on the right or left side

- Options: Special lengths (100 1/mm raster) upon request, max. 6,000 mm
- Available also as direct drive with
 - drive module with stepping motor MS 430 HT*
 - drive module with DC servo motor MV 330*
 - drive module with AC servo motor MY 073*
 - * in connection with motor mounting plate, item no.: 232199 0004
- Limit switch with connecting cable (only integrated in connection with drive module)

ZF 2

Technical data

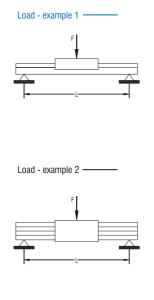
Belt version	HTD 5M, width 25 mm
Weight of slide	0.430 kg
Weight without drive module	1,000 mm ≙ 7.9 kg
Nominal mass of timing belt	.0.09 kg/m
Weight of slide	. 2.03 kg

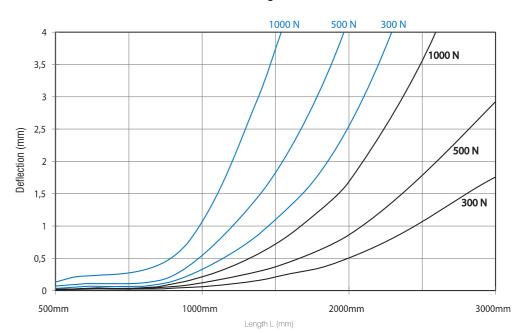

Nominal weight of guide0.472 kg/100 mm
Effective diameter of the synchronized pulleys. Ø 22.28 mm
Moment of inertia of the synchronized pulleys5.58·10 ⁻⁶ kgm ²
Feed per revolution70 mm

Idle torques

Speed	Idle torque
[1/min]	[Nm]
500	0,16
1500	0,24
3000	0,36

Load diagramm

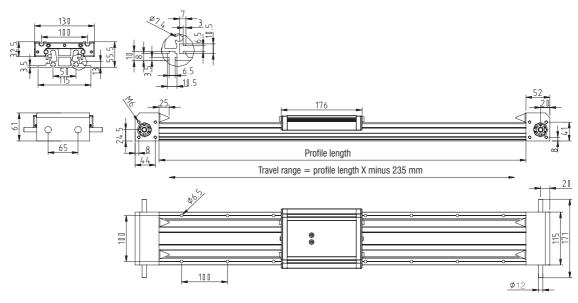

Permissible accelerated masses related to belt strength*



 $^{^{\}star}$ At vertical assembly, the acceleration due to gravity (g = 9.81 m/s²) has to be taken into account

Deflection

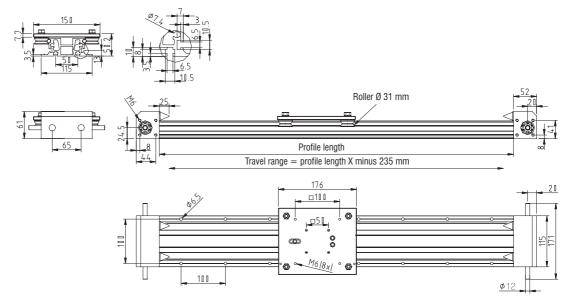
Deflection Timing Belt Feed Axis ZF 2


iselautomation Timing Belt Feed Axes MECHANICS B181

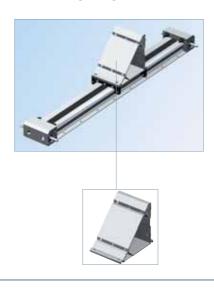
ZF 2

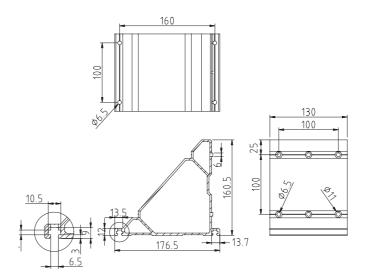
Timing belt feed axis

without motor with shaft slide

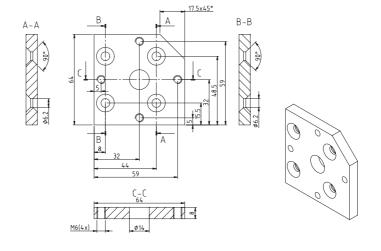


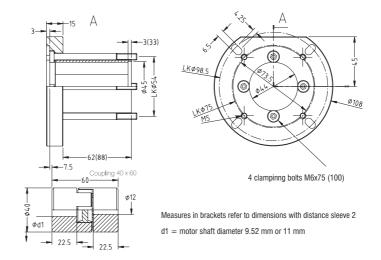
Timing belt feed axis


without motor with carriage



ZF 2


Mounting angle


Motor mounting plate (option)

Coupling casing set 2

ZF 2

Drive modules

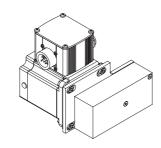
Stepping motor MS 430 HT DC servo motor MV 330

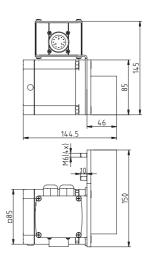
Holding torque – bipolar	600 Ncm
Stepping angle, full step	1.8 deg
half step	0.9 deg
Nominal voltage – bipolar	2.8 V
Resistance of winding	0.66 Ω
Inductance of winding	2.5 mH
Current of winding – bipolar	5.9 A

Nominal power	330 W
Nominal speed	3,000 rpm
Nominal torque	100 Ncm
Current at nominal torque	6.5 A
Nominal voltage	65 V
Peak torque	539 Ncm
Current at peak torque	30 A
Ambient temperature	0 - 40 °C

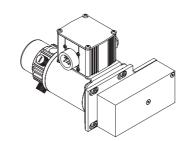
AC servo motor MY 054

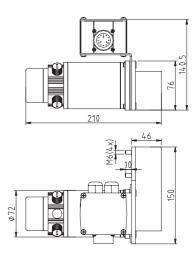
Nominal power	500 W
Nominal speed	6,000 rpm
Nominal permanent torque	100 Ncm
Nominal permanent current	3.2 A
Voltage constant	20.0 V/1,000
Moment of inertia of rotor	0.45 kgcm ²


Drive module with stepping motor MS 430 HT


(reduction 2:1)

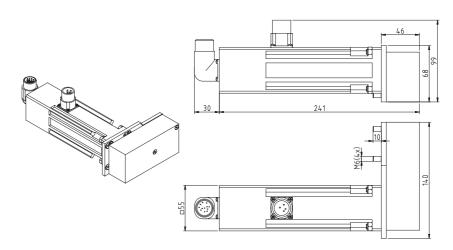
Feed: 35 mm/revolution


ZF 2


Drive module with DC servo motor MV 330

(reduction 2:1)

Feed: 35 mm/revolution



Drive module with AC servo motor MY 054

(reduction 2:1)

Feed: 35 mm/revolution

ZF 2

Order key

232 002 XXXX

with carriage

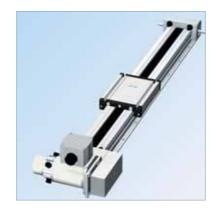
Drives/slides, carriage

0 = Stepping motor MS 430 HT	(ratio 2:1)	with shaft slide
1 = Stepping motor MS 430 HT	(ratio 2:1)	with carriage
2 = DC servo motor MV 330	(ratio 2:1)	with shaft slide
3 = DC servo motor MV 330	(ratio 2:1)	with carriage
4 = DC servo motor MY 054	(ratio 2:1)	with shaft slide
5 = AC servo motor MY 054	(ratio 2:1)	with carriage
8 = Without motor		with shaft slide

Profile lengths (mm) 698, 998, 1,498, 1,998, 2,498, 2,998

(e. g. 698 mm = 0701,498 mm = 150)

Option: up to 6,000 mm


Order samples

9 = Without motor

- With stepping motor MS 430 HT
- Ratio 2:1
- · With shaft slide
- · Profile length 698 mm

Item no.: 232002 0070

- With DC servo motor MV 330
- Ratio 2:1
- · With shaft slide
- Profile length 698 mm

Item no.: 232002 2070

- with AC servo motor MY 054
- Ratio 2:1
- · With shaft slide
- · Profile length 698 mm

Item no.: 232000 4070

ZF 2

Accessory

Motor mounting plate

- for ZF 2
- · incl. fastening
- for direct drive, see drive modules

Item no.: 232199 0004

Angle brackets

- for ZF 2
- incl. fastening

Item no.: 232199 0005

Coupling for transmission shaft

- for ZF 2
- \bullet packaging unit = 2 couplings

Item no.: 218050 0002

Transmission shaft Ø 25 mm

• for ZF 2

Length 1 m, item no.: 219001 0125 Length 2 m, item no.: 219001 0225

Open timing belt feed axis

- Aluminium profile with midget linear guide MLF 4
- Clearance-free feed with timing belt feed axis
 - timing belt with 5 mm pitch, width 25 mm
- Feed 5 m/s, at the most
- Shaft slide WS 3
 L 176 x W 130 mm

- Feed per revolution: 70 mm or 150 mm
- Repeatability lower or equal ± 0.2 mm
- Limit and/orreference switch, accuracy < 0.1 mm
- Available in lengths up to 6,000 mm

- Motor modules can be flange-mounted on the right or left side
- Option:
 - special lengths (100 1/mm raster) upon request, max. 6,000 mm
 - limit switch with connecting cable (only integrated in connection with drive module)

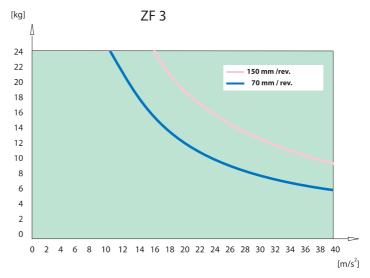
ZF 3

Technical data

Belt version	HTD 5M, width 25 mm
Weight of slide	0.940 kg
Weight without drive module	1,000 mm ≙ 10.5 kg
Nominal mass of timing belt	0.09 kg/m
Weight of slide	2.03 kg
Nominal weight of guide	0.472 kg/100 mm
Feed per revolution	70 mm

Effective diameter of the synchronized	pulleys
Feed 70 mm/revolution	22.28 mm
Feed 150 mm/revolution	47.75 mm
Moment of inertia of the synchronized	pulleys
Feed 70 mm/revolution	5.58 x 10 ⁻⁶ kgm ²
Feed 150 mm/revolution	1.796 x 10 ⁻⁴ kam ²

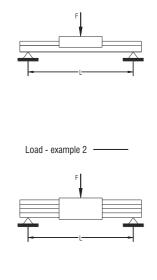
Idle torques

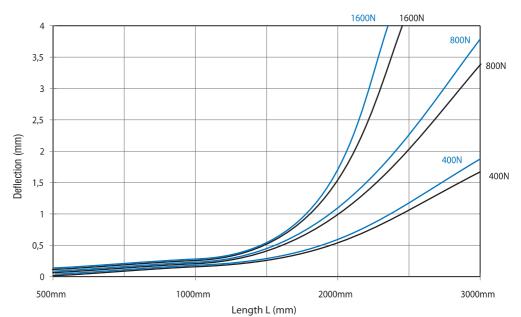

70 mm/revolution

10 mm/10 volution		
Revolution	on Idle torque	
[1/min]	[Nm]	
500	0.16	
1,500	0.24	
3,000	0.36	

150 mm/revolution		
Speed	No-load torque	
[1/min]	[Nm]	
500	0.60	
1,500	0.70	
3,000	0.80	

Load diagram

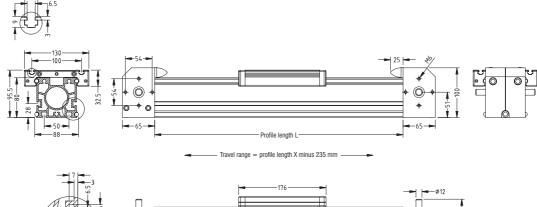

Permissible accelerated masses related to belt strength*


^{*} At vertical assembly, the acceleration due to gravity ($g = 9.81 \text{ m/s}^2$) has to be taken into account

Deflection

Load - example 1

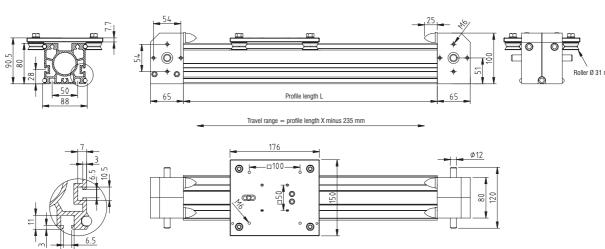
Deflection Timing Belt Feed Axis ZF 3


ZF 3

Timing belt feed axis

with shaft slide

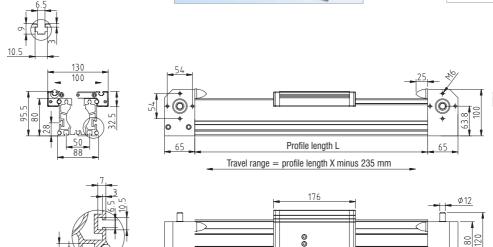
Feed: 150 mm/revolution


0

Timing belt feed axis

with carriage

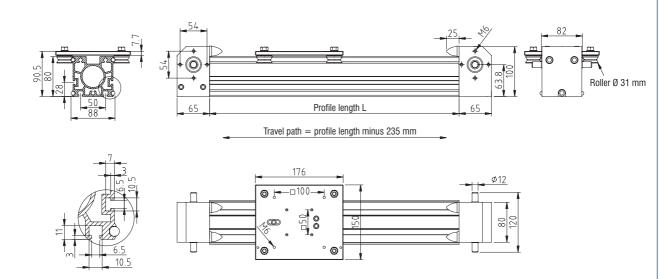
Feed: 150 mm/revolution


ZF 3

Timing belt feed axis

with shaft slide

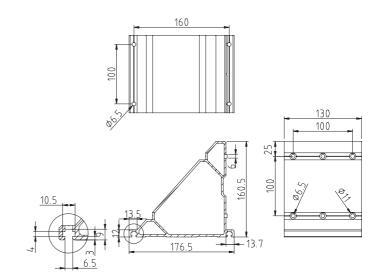
Feed: 70 mm/revolution



Timing belt feed axis

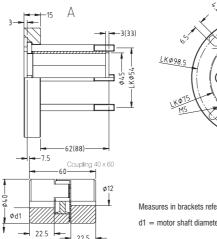
with carriage

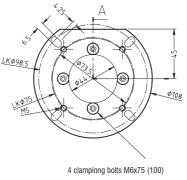
Feed: 70 mm/revolution



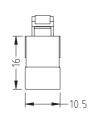
ZF 3

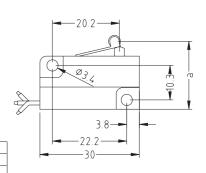
Mounting angle





Coupling casing set 2




d1 = motor shaft diameter 9.52 mm or 11 mm

Limit switch

Dimensions a (mm)	Actuator position
21.9 ± 0.3	Rest position
20.7 ± 0.4	Switching point
21.0 ± 0.4	Back-switch point
18.9 ± max.	End position (minimum measure)

ZF 3

Drive modules

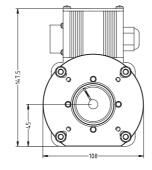

Stepping motor MS 430 HT DC servo motor MV 330

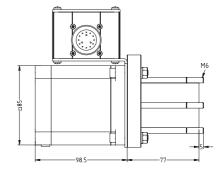
Holding torque – bipolar	600 Ncm
Stepping angle, full step	1.8 degree
Stepping angle, half-step	0.9 degree
$Nominal\ voltage-bipolar$	2.8 V
Resistance of winding	0.66 Ω
Winding inductivity	2.5 mH
Current of winding — hinglar	59A

Nominal power	330 W
Nominal speed	3,000 rpm
Nominal torque	100 Ncm
Current at nominal torque	6.5 A
Nominal voltage	65 V
Peak torque	539 Ncm
Current at peak torque	30 A
Ambient temperature	0 - 40 °C

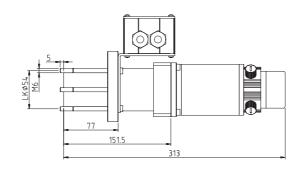
AC servo motor MY 073

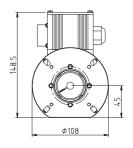
Nominal power	.830 W
Nominal speed	
Nominal permanent torque	•
Nominal permanent current	
Voltage constant	
Moment of inertia of rotor	.0.57 kacm²



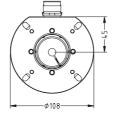

Drive module with stepper motor MS-430 HT

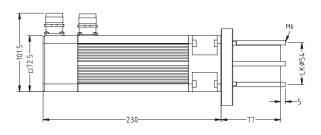
Feed: 70 mm / rev.


ZF 3

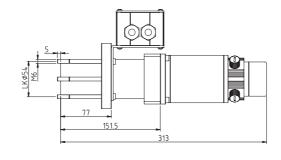

Drive module with DC servo motor MV 330

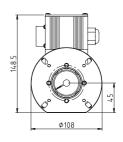
Feed: 70 mm/revolution



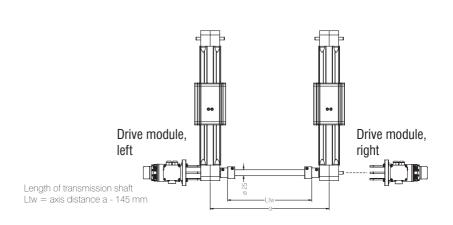

Drive module with AC servo motor MY 073

Feed: 70 mm/revolution




Drive module with DC servo motor MV 330 (reduction 3:1)

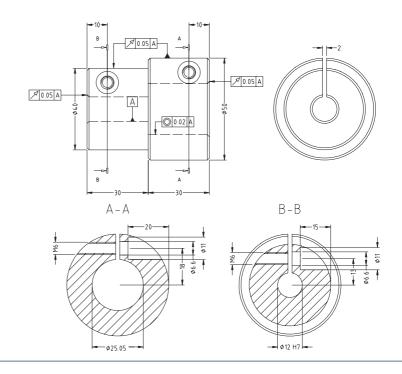
Feed: 150 mm/revolution



ZF 3

Connection of two timing belt feed axes

Transmission shaft



Connection of two timing belt feed axes

Coupling for transmission shaft

Moments of inertia

for coupling and transmission shaft

Coupling

Transmission shaft (per 100 mm)

 $J_k \ = 6.643 \ 10^{\text{--}5} \ kgm^2$

 $J_{Trs} = 5.218 \ 10^{-6} \ kgm^2/100 \ mm$

ZF 3

Order key

Feed

6 = 150 mm/revolution **7** = 70 mm/revolution

Drives *

Stepping motor MS 430 HT

DC servo motor MV 330

DC servo motor MV 330 (ratio 3:1)

AC servo motor MY 073

23200 X X XXX

Slide, carriages

396573 0020

0 = with shaft slide1 = with carriage

Drive on the right side ltem no. ltem no. 396085 0193 396104 0093 396134 0093 396134 0020

396573 0020

Profile lengths (mm)

698; 998; 1,498; 1,998; 2,498; 2,998

(e. g. 698 mm = 0701,498 mm = 150)

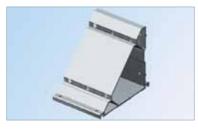
* Please, order the drive modules separately; use the above-stated item numbers for this purpose. Do not forget to specify whether the delivery should take place with or without extension. Regarding the AC servo motor MY 073, the driving side has to be stated separately.

Order samples

- with stepping motor MS 430 HT
- feed 70 mm/revolution
- · motor connection, left
- · with shaft slide
- · basic profile length 698 mm

Item no.: 232007 0070 (feed) item no.: 396085 0020 (drive)

- with DC servo motor MV 330
- feed 70 mm/revolution
- · motor connection, left
- · with shaft slide
- · basic profile length 698 mm


Item no.: **232007 0070** (feed) item no.: **396104 0020** (drive)

- with AC servo motor MY 073
- feed 70 mm/revolution
- · motor connection, left
- · with shaft slide
- · basic profile length 698 mm

Item no.: **232007 0070** (feed) item no.: **396573 0020** (drive)

Accessory

Angle brackets

• for ZF 3

incl. fastening

Item no.: 232199 0005

Coupling for transmission shaft

• for ZF 3

packaging unit: 2 couplingsItem no.: 218050 0002

Transmission shaft Ø 25 mm

• for ZF 3

Length 1 m, item no.: 219001 0125 Length 2 m, item no.: 219001 0225

Drive Dimensioning

Calculation of the drive torques

Basically, the necessary drive torque consists of "load moment", "acceleration torque" and "idle torque".

Definitions

 M_A [Nm] Necessary drive torque

 M_{last} [Nm] Moment resulting from the different loads

M_{Leer} [Nm]* Idle torque

 M_{rot} [Nm] Rotatory acceleration torque M_{trans} [Nm] Translatory acceleration torque

 $F_{x}[N]$ Feed force $F_a[N]$ G force

 $g [m/s^2]$ Gravity = 9.81

 $V_{max} [m/s]^*$ Maximum traverse speed m [kg]Total mass to be moved

a [m/s²] Acceleration

 $d_0 [mm]^*$ Effective diameter of the synchronized pulley

P [kW] Drive capacity

 J_{syn} [kgm²]* Moment of inertia of the synchronized pulleys

 n_{max} [1/min] Maximum speed Friction factor = 0.1μ [kq/m]*Specific mass of timing belt

Transmission ratio

transport mass m =+ mass of the slide +mass of the timing belt

Mass of the timing belt = Specific mass · 2 · Length of feed profile

1000

Feed force F_x

$$F_x = m \cdot g \cdot \mu$$

G force F_a

$$F_a = m \cdot a$$

At vertical operation, the gravity g has to be added to the mass acceleration a. $(g = 9.81 \text{ m/s}^2)$.

Drive capacity P

$$P = \frac{M_A \cdot n_{max} \cdot 2 \cdot \pi}{2 \cdot 1000}$$

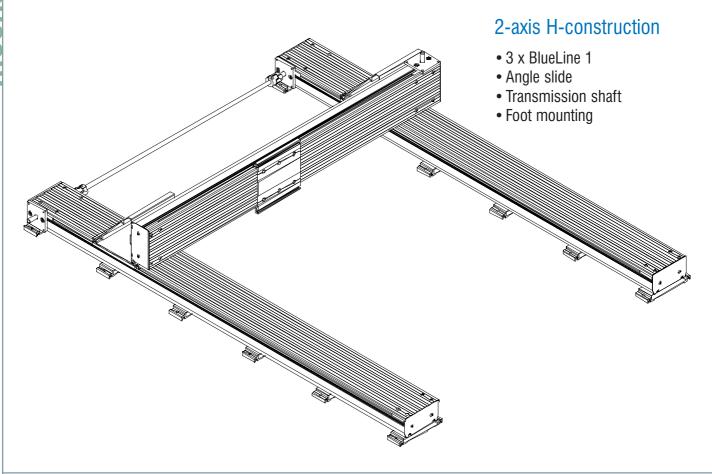
Resulting moment M_{Last}

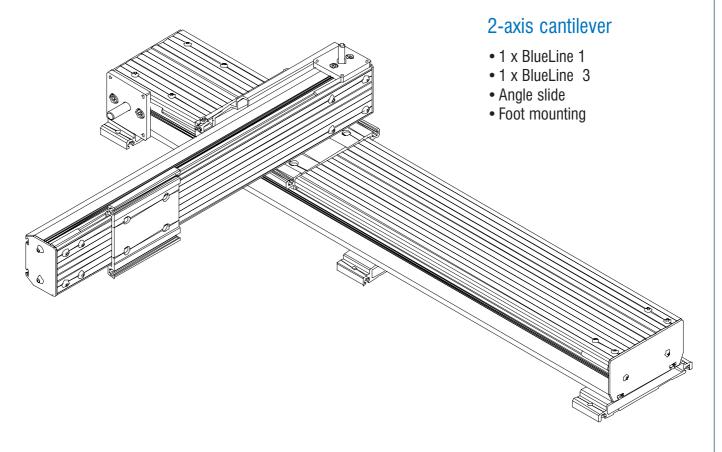
$$M_{Last} = \frac{F_x \cdot d_0}{2 \cdot 1000}$$

Translatory acceleration torque M_{trans}

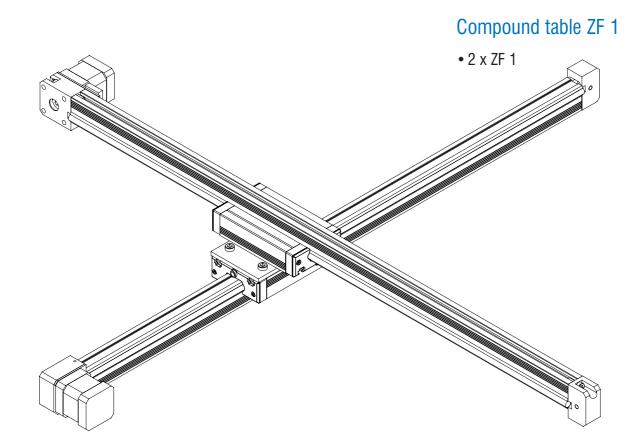
$$M_{Trans} = F_a \cdot d_0$$

$$2 \cdot 1000$$


Rotary acceleration torque M_{rot}


$$M_{rot} = J_{syn} \cdot \underline{n_{max} \cdot 2 \cdot \pi \cdot a}_{60 \cdot V_{max}}$$

$$M_A = M_{Last} + M_{trans} + M_{rot} + M_{leer}$$


^{*} The particulars are stated on the respective data sheets.

Application Samples

Application Samples

